2016 Annual Drinking Water Quality Report Creekside Mobile Village

PWS ID# NC 03 92 229

We are pleased to present to you this year's Annual Drinking Water Quality Report. This report is a snapshot of last year's water quality. Included are details about from where your water comes, what it contains, and how it compares to standards set by regulatory agencies. Our constant goal is to provide you with a safe and dependable supply of drinking water. We want you to understand the efforts we make to continually improve the water treatment process and protect our water resources. We are committed to ensuring the quality of your water and to providing you with this information, because informed customers are our best allies. If you have any questions about this report or concerning your water, please contact Crosby Water and Sewer Inc. at (919) 404-1668. We want our valued customers to be informed about their water utility.

What EPA Wants You to Know

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline (800-426-4791).

Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbiological contaminants are available from the Safe Drinking Water Hotline (800-426-4791).

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Crosby Water and Sewer is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing the tap for 30 seconds to 2 minutes before using the water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Contaminants that may be present in source water include <u>microbial contaminants</u>, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife; <u>inorganic contaminants</u>, such as salts and metals, which can be naturally-occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming; <u>pesticides and herbicides</u>, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses; <u>organic chemical contaminants</u>, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, and septic systems; and <u>radioactive contaminants</u>, which can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water, which must provide the same protection for public health.

When You Turn on Your Tap, Consider the Source

The water that is used by this system is from two wells located at Creekside Mobile Village

Source Water Assessment Program (SWAP) Results

The North Carolina Department of Environment and Natural Resources (DENR), Public Water Supply (PWS) Section, Source Water Assessment Program (SWAP) conducted assessments for all drinking water sources across North Carolina. The purpose of the assessments was to determine the susceptibility of each drinking water source (well or surface water intake) to Potential Contaminant Sources (PCSs). The results of the assessment are available in SWAP Assessment Reports that include maps, background information and a relative susceptibility rating of Higher, Moderate or Lower.

The relative susceptibility rating of each source for Creekside Mobile Village was determined by combining the contaminant rating (number and location of PCSs within the assessment area) and the inherent vulnerability rating (i.e., characteristics or existing conditions of the well or watershed and its delineated assessment area). The assessment findings are summarized in the table below:

Susceptibility of Sources to Potential Contaminant Sources (PCSs)

Source Name	Susceptibility Rating	SWAP Report Date
Well # 1	Moderate	July 2015
Well # 2	Moderate	July 2015

The complete SWAP Assessment report for Creekside Mobile Village may be viewed on the Web at: <u>www.ncwater.org/pws/swap</u> Please note that because SWAP results and reports are periodically updated by the PWS Section, the results available on this web site may differ from the results that were available at the time this CCR was prepared. If you are unable to access your SWAP report on the web, you may mail a written request for a printed copy to: Source Water Assessment Program – Report Request, 1634 Mail Service Center, Raleigh, NC 27699-1634, or email requests to swap@ncdenr.gov. Please indicate your system name, PWSID, and provide your name, mailing address and phone number. If you have any questions about the SWAP report please contact the Source Water Assessment staff by phone at 919-707-9098.

It is important to understand that a susceptibility rating of "higher" <u>does not</u> imply poor water quality, only the systems' potential to become contaminated by PCS's in the assessment area.

Help Protect Your Source Water

Protection of drinking water is everyone's responsibility. We have implemented the following source water protection actions: maintaining the area around the well and making sure it is free of potential contamination.. You can help protect your community's drinking water source(s) in several ways: (examples: dispose of chemicals properly; take used motor oil to a recycling center, volunteer in your community to participate in group efforts to protect your source, etc.).

Violations that Your Water System Received for the Report Year

During 2016 or during any compliance period that ended in 2016, we received no violations.

Water Quality Data Table of Detected Contaminants

We routinely monitor for over 150 contaminants in your drinking water according to Federal and State laws. The table below lists all the drinking water contaminants that we <u>detected</u> in the last round of sampling for each particular contaminant group. The presence of contaminants does <u>not</u> necessarily indicate that water poses a health risk. **Unless otherwise noted, the data presented in this table is from testing done January 1 through December 31, 2016.** The EPA or the State requires us to monitor for certain contaminants less than once per year because the concentrations of these contaminants are not expected to vary significantly from year to year. Some of the data, though representative of the water quality, is more than one year old.

Unregulated contaminants are those for which EPA has not established drinking water standards. The purpose of unregulated contaminant monitoring is to assist EPA in determining the occurrence of unregulated contaminants in drinking water and whether future regulation is warranted.

Important Drinking Water Definitions:

Not-Applicable (N/A) – Information not applicable/not required for that particular water system or for that particular rule.

Non-Detects (ND) - Laboratory analysis indicates that the contaminant is not present at the level of detection set for the particular methodology used.

Parts per million (ppm) or Milligrams per liter (mg/L) - One part per million corresponds to one minute in two years or a single penny in \$10,000.

Parts per billion (ppb) or Micrograms per liter (ug/L) - One part per billion corresponds to one minute in 2,000 years, or a single penny in \$10,000,000.

Picocuries per liter (pCi/L) - Picocuries per liter is a measure of the radioactivity in water.

Million Fibers per Liter (MFL) - Million fibers per liter is a measure of the presence of asbestos fibers that are longer than 10 micrometers.

Action Level (AL) - The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

Treatment Technique (TT) - A treatment technique is a required process intended to reduce the level of a contaminant in drinking water.

Maximum Residual Disinfection Level Goal (MRDLG) – The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

Maximum Residual Disinfection Level (MRDL) – The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Contaminant Level (MCL) - The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

Maximum Contaminant Level Goal (MCLG) - The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Extra Note: MCLs are set at very stringent levels. To understand the possible health effects described for many regulated constituents, a person would have to drink 2 liters of water every day at the MCL level for a lifetime to have a one-in-a-million chance of having the described health effect.

TOTAL COLIFORM RULE (Samples Taken January 1, 2016 through March 31, 2016) Microbiological Contaminants in the Distribution System - For systems that collect *less than 40* samples per month

n	ionth.

Contaminant (units)	MCL Violation Y/N	Your Water	MCLG	MCL	Likely Source of Contamination
Total Coliform Bacteria (presence or absence)	N	0	0	1 positive sample / month* <u>Note</u> : If either an original routine sample and/or its repeat samples(s) are fecal	Naturally present in the environment
Fecal Coliform or <i>E. coli</i> (presence or absence)	N	0	0	coliform or <i>E. coli</i> positive, a Tier 1 violation exists.	Human and animal fecal waste

* If a system collecting fewer than 40 samples per month has two or more positive samples in one month, the system has a MCL violation.

REVISED TOTAL COLIFORM RULE (Samples taken April 1, 2016 through December 31, 2016):

Microbiological Contaminants in the Distribution System - For systems that collect *less than 40* samples per month

Contaminant (units)	MCL Violation Y/N	Your Water	MCLG	MCL	Likely Source of Contamination
Total Coliform Bacteria (presence or absence)	N	0	N/A	TT*	Naturally present in the environment
<i>E. coli</i> (presence or absence)	N	0	0	Routine and repeat samples are total coliform-positive and either is <i>E. coli</i> - positive or system fails to take repeat samples following <i>E. coli</i> -positive routine sample or system fails to analyze total coliform-positive repeat sample for <i>E. coli</i> <u>Note</u> : If either an original routine sample and/or its repeat samples(s) are <i>E. coli</i> positive, a Tier 1 violation exists.	Human and animal fecal waste

* If a system collecting fewer than 40 samples per month has two or more positive samples in one month, an assessment is required.

Inorganic Contaminants

Contaminant (units)	Sample Date	MCL Violation Y/N	Your Water	Range Low High	MCLG	MCL	Likely Source of Contamination		
Flouride (ppm)	2016	Ν	1.1	N/A	2	2	Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits		

Stage 2 Disinfection Byproduct Compliance - Based upon Locational Running Annual Average (LRAA)

Year Sampled	MCL Violation Y/N	Your Water (highest LRAA)	Range Low High	MCLG	MCL	Likely Source of Contamination
2014	Ν	5	N/A	N/A	80	Byproduct of drinking water disinfection
2 0 1 4	N	5	N/A	N/A	80	
2014	Ν	1.4	N/A	N/A	60	Byproduct of drinking water disinfection
2 0 1 4	N	1.4	N/A	N/A	60	
	Sampled 2014 2 0 1 4 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 4 2 0 1 4 2 0 1 4 2 0 1 4 2 0 1 4 2 0 1 4 2 0 1 4 2 0 1 4 2 0 1 4 2 0 1 4 2 0 1 4 2 0 1 4 2 0 1 4 2 0 1 4 2 0 1 4 2 0 1 4 2 0 1 4 2 0 1 4 2 0 1 2 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1	Year Sampled Violation Y/N 2014 N 2014 N 4 2014 N 2014 N 2014 N 2014 N	Year SampledMCL Violation Y/N Water (highest LRAA)2014N5 2 0 1 4N5 2 0 1 4N5 2 0 1 2N5 2 0 1N12014N1.4 2 0 1N1.4	Year SampledMCL Violation Y/N Water (highest LRAA)LowHigh2014N5N/A 2 0 1 4N5N/A 2 0 1 4N5N/A 2 0 1 4N5N/A 2 0 1N1N/A 2014 N1.4N/A 2014 N1.4N/A	Year SampledMCL Violation Y/N Water (highest LRAA)LowHighMCLG2014N5N/AN/A 2 0 1 4N5N/AN/A 2 0 1 4N5N/AN/A 2 0 1N5N/AN/A 2 0 1N1.4N/AN/A	Year SampledMCL Violation Y/N Water (highest LRAA)LowHighMCLGMCL2014N5N/AN/A80 2 0 1 4N5N/AN/A80 2 0 1 4N5N/AN/A80 2 0 1 4N5N/AN/A80 2 0 1N5N/AN/A80 2 0 1N1II10 2014 N1.4N/AN/A60

Disinfectant Residuals Summary

	Year Sampled	MRDL Violation Y/N	Your Water (highest RAA)	Ra: Low	nge High	MRDLG	MRDL	Likely Source of Contamination
Chlorine (ppm)	2016	Ν	0.42	0.3	0.5	4	4.0	Water additive used to control microbes

The PWS Section requires monitoring for other misc. contaminants, some for which the EPA has set national secondary drinking water standards (SMCLs) because they may cause cosmetic effects or aesthetic effects (such as taste, odor, and/or color) in drinking water. The contaminants with SMCLs normally do not have any health effects and normally do not affect the safety of your water.

Other Miscellaneous Water Characteristics Contaminants

Contaminant (units)	Sample Date	Your Water	Range Low High	SMCL
Iron(ppm)	2016	0.144	N/A	0.300
Manganese	2015	0.036	N/A	0.050
Sodium (ppm)	2016	61.33	N/A	N/A
pН	2016	7.3	N/A	6.5 to 8.5
Sulfate (ppm)	2016	20.8	N/A	250.0